A Car-Following Model Based on Safety Margin considering ADAS and Driving Experience
Author(s) -
Yugang Wang,
Nengchao Lyu
Publication year - 2021
Publication title -
advances in civil engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.379
H-Index - 25
eISSN - 1687-8094
pISSN - 1687-8086
DOI - 10.1155/2021/6619137
Subject(s) - driving simulator , margin (machine learning) , quantization (signal processing) , computer science , variance (accounting) , statistical model , mean squared error , car model , simulation , automotive engineering , statistics , mathematics , engineering , machine learning , accounting , business
Existing studies had shown that advanced driver assistance systems (ADAS) and driver individual characteristics can significantly affect driving behavior. Therefore, it is necessary to consider these factors when building the car-following model. In this study, we established a car-following model based on risk homeostasis theory, which uses safety margin (SM) as the risk level quantization parameter. Firstly, three-way Analysis of Variance (ANOVA) was used to analyze the influencing factors of car-following behavior. The results showed that ADAS and driving experience have a significant effect on the drivers’ car-following behavior. Then, according to these two significant factors, the car-following model was established. The statistical method was used to calibrate the parameter reaction response τ. Other four parameters (SMDL, SMDH, α1, and α2) were calibrated using a classical genetic algorithm, and the effects of ADAS and driving experience in these four parameters were analyzed using T-test. Finally, the proposed model was compared with the GHR model, and the result showed that the proposed model has a smaller Root Mean Square Error (RMSE) than the GHR model. The proposed model is a method of simulating different driving behaviors that are affected by ADAS and individual characteristics. Considering more driver individual characteristics, such as driving style, is the future research goal.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom