z-logo
open-access-imgOpen Access
Research on Credit Card Default Prediction Based on k-Means SMOTE and BP Neural Network
Author(s) -
Ying Chen,
Ruirui Zhang
Publication year - 2021
Publication title -
complexity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.447
H-Index - 61
eISSN - 1099-0526
pISSN - 1076-2787
DOI - 10.1155/2021/6618841
Subject(s) - credit card , computer science , artificial neural network , artificial intelligence , machine learning , data mining , world wide web , payment
Aiming at the problem that the credit card default data of a financial institution is unbalanced, which leads to unsatisfactory prediction results, this paper proposes a prediction model based on k-means SMOTE and BP neural network. In this model, kmeans SMOTE algorithm is used to change the data distribution, and then the importance of data features is calculated by using random forest, and then it is substituted into the initial weights of BP neural network for prediction. 0e model effectively solves the problem of sample data imbalance. At the same time, this paper constructs five common machine learning models, KNN, logistics, SVM, random forest, and tree, and compares the classification performance of these six prediction models. 0e experimental results show that the proposed algorithm can greatly improve the prediction performance of the model, making its AUC value from 0.765 to 0.929. Moreover, when the importance of features is taken as the initial weight of BP neural network, the accuracy of model prediction is also slightly improved. In addition, compared with the other five prediction models, the comprehensive prediction effect of BP neural network is better.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom