z-logo
open-access-imgOpen Access
Lane Detection Based on Adaptive Network of Receptive Field
Author(s) -
YuFan Cai,
Yanyan Zhang,
Chengsheng Pan
Publication year - 2021
Publication title -
security and communication networks
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.446
H-Index - 43
eISSN - 1939-0114
pISSN - 1939-0122
DOI - 10.1155/2021/6618459
Subject(s) - computer science , pixel , receptive field , artificial intelligence , segmentation , interference (communication) , shadow (psychology) , noise (video) , field (mathematics) , computer vision , image (mathematics) , pattern recognition (psychology) , channel (broadcasting) , telecommunications , mathematics , psychology , pure mathematics , psychotherapist
The difficulty of lane detection lies in the imbalance of the number of target pixels and background pixels. The sparse target distribution misleads the neural network to pay more attention to background segmentation in order to obtain a better loss convergence result. This makes it difficult for some models to detect lane line pixels and leads to the training fail (unable to output useful lane information). Increasing receptive field properly can enlarge the sphere of action between pixels, so as to restrain this trouble. Moreover, the interference information and noise existing in the real environment increase the difficulty of lane classification, such as vehicle occlusion, car glass reflection, and tree shadow. In this paper, we do think that the features obtained by the reasonable combination of receptive fields can help avoid oversegmentation of the image, so that most of the interference information can be filtered out. Based on this idea, Adaptive Receptive Field Net (ARFNet) is proposed to solve the problem of receptive field combination with the help of multireceptive field aggregation layers and scoring mechanism. This paper explains the working principle of ARFNet and analyzes several results of experiments, which are carried out to adjust network structure parameters in order to get better effects in the CuLane dataset testing.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom