Water-Jet Erosion of Grade-A Ship Steel: Experimental Research
Author(s) -
Yupeng Cao,
Yue Zhang,
Weidong Shi,
Hua Lü,
Linwei Tan,
Yongfei Yang
Publication year - 2021
Publication title -
shock and vibration
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.418
H-Index - 45
eISSN - 1875-9203
pISSN - 1070-9622
DOI - 10.1155/2021/6617685
Subject(s) - water jet , jet (fluid) , erosion , materials science , cementite , scanning electron microscope , metallurgy , pearlite , stress (linguistics) , diffractometer , phase (matter) , microstructure , composite material , geology , mechanics , nozzle , engineering , mechanical engineering , physics , paleontology , austenite , linguistics , philosophy , quantum mechanics
A water-jet erosion test was carried out on grade-A ship steel to study the interaction and erosion mechanism of the water jet on the steel surface. When the water jet impacted, a STSS-1 stress-detection module was used to collect the dynamic strain signal on the rear of the ship’s plate, and a scanning electron microscope, transmission electron microscope, X-ray diffractometer, and other equipment were used to analyze the microstructure and phase of the grade-A ship steel before impact. The surface morphology of the material after impact was studied and analyzed. The impact stress of the water jet on the grade-A steel was an alternating stress, and the jet pressure decayed in the radial direction. The material surface was fatigued under the action of the jet alternating stress. After the water-jet erosion, the central area of the grade-A steel was dominated by an elongated cementite hard phase, and the peripheral area had a pearlite structure. A model for the jet erosion and peeling of grade-A ship steel was established to clarify the mechanism of erosion by the water jet.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom