A 3D Machine Vision-Enabled Intelligent Robot Architecture
Author(s) -
Yanjun Zhang,
Jianxin Zhao,
Han He-yong
Publication year - 2021
Publication title -
mobile information systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.346
H-Index - 34
eISSN - 1875-905X
pISSN - 1574-017X
DOI - 10.1155/2021/6617286
Subject(s) - computer science , computer vision , artificial intelligence , camera resectioning , monocular , calibration , binocular vision , preprocessor , monocular vision , robustness (evolution) , machine vision , mathematics , biochemistry , statistics , chemistry , gene
In this paper, the principle of camera imaging is studied, and the transformation model of camera calibration is analyzed. Based on Zhang Zhengyou’s camera calibration method, an automatic calibration method for monocular and binocular cameras is developed on a multichannel vision platform. The automatic calibration of camera parameters using human-machine interface of the host computer is realized. Based on the principle of binocular vision, a feasible three-dimensional positioning method for binocular target points is proposed and evaluated to provide binocular three-dimensional positioning of target in simple environment. Based on the designed multichannel vision platform, image acquisition, preprocessing, image display, monocular and binocular automatic calibration, and binocular three-dimensional positioning experiments are conducted. Moreover, the positioning error is analyzed, and the effectiveness of the binocular vision module is verified to justify the robustness of our approach.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom