z-logo
open-access-imgOpen Access
Adaptive Optimization of Traffic Signal Timing via Deep Reinforcement Learning
Author(s) -
Zibo Ma,
Tongchao Cui,
Wenxing Deng,
Fengyao Jiang,
Liguo Zhang
Publication year - 2021
Publication title -
journal of advanced transportation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 46
eISSN - 2042-3195
pISSN - 0197-6729
DOI - 10.1155/2021/6616702
Subject(s) - reinforcement learning , queue , traffic flow (computer networking) , computer science , intersection (aeronautics) , real time computing , traffic optimization , signal timing , convergence (economics) , traffic signal , scheme (mathematics) , traffic congestion , simulation , floating car data , engineering , artificial intelligence , computer network , transport engineering , mathematical analysis , mathematics , economics , economic growth
With rapid development of the urbanization, how to improve the traffic lights efficiency has become an urgent issue. The traditional traffic light control is a method that calculates a series of corresponding timing parameters by optimizing the cycle length. However, fixing sequence and duration of traffic lights is inefficient for dynamic traffic flow regulation. In order to solve the above problem, this study proposes a traffic light timing optimization scheme based on deep reinforcement learning (DRL). In this scheme, the traffic lights can output an appropriate phase according to the traffic flow state of each direction at the intersection and dynamically adjust the phase length. Specifically, we first adopt Proximal Policy Optimization (PPO) to improve the convergence speed of the model. Then, we elaborate the design of state, action, and reward, with the vehicle state defined by Discrete Traffic State Encoding (DTSE) method. Finally, we conduct experiments on real traffic data via the traffic simulation platform SUMO. The results show that, compared to the traditional timing control, the proposed scheme can effectively reduce the waiting time of vehicles and queue length in various traffic flow modes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom