z-logo
open-access-imgOpen Access
Short-Term Electricity Consumption Forecasting Based on the EMD-Fbprophet-LSTM Method
Author(s) -
Guorong Zhu,
Sha Peng,
Yongchang Lao,
Qichao Su,
Qiujie Sun
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/6613604
Subject(s) - consumption (sociology) , electricity , term (time) , computer science , time series , power consumption , component (thermodynamics) , series (stratigraphy) , nonlinear system , power (physics) , econometrics , machine learning , engineering , economics , quantum mechanics , sociology , biology , electrical engineering , thermodynamics , paleontology , social science , physics
Short-term electricity consumption data reflects the operating efficiency of grid companies, and accurate forecasting of electricity consumption helps to achieve refined electricity consumption planning and improve transmission and distribution transportation efficiency. In view of the fact that the power consumption data is nonstationary, nonlinear, and greatly influenced by the season, holidays, and other factors, this paper adopts a time-series prediction model based on the EMD-Fbprophet-LSTM method to make short-term power consumption prediction for an enterprise's daily power consumption data. The EMD model was used to decompose the time series into a multisong intrinsic mode function (IMF) and a residual component, and then the Fbprophet method was used to predict the IMF component. The LSTM model is used to predict the short-term electricity consumption, and finally the prediction value of the combined model is measured based on the weights of the single Fbprophet and LSTM models. Compared with the single time-series prediction model, the time-series prediction model based on the EMD-Fbprophet-LSTM method has higher prediction accuracy and can effectively improve the accuracy of short-term regional electricity consumption prediction.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom