Application of Cloud Model and Bayesian Network to Piracy Risk Assessment
Author(s) -
Kefeng Liu,
Lizhi Yang,
Ming Li
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/6610339
Subject(s) - bayesian network , vulnerability (computing) , vulnerability assessment , cloud computing , hazard , risk assessment , set (abstract data type) , computer science , computer security , construct (python library) , bayesian probability , risk analysis (engineering) , plan (archaeology) , operations research , engineering , artificial intelligence , geography , business , psychology , chemistry , organic chemistry , psychological resilience , psychotherapist , programming language , operating system , archaeology
Piracy is a major threat to maritime safety. Assessing piracy risk is crucial to ship safety, travel security, and emergency plan preparation. In the absence of a thorough understanding of the factors and mechanisms that influence piracy, no perfect mathematical equation can be set up for such risk assessment. Therefore, the major factors that influence piracy were identified to construct an indicator system for assessment. These factors were analyzed, keeping in view the overall hazard, vulnerability, and antirisk properties, and then the Bayesian network was introduced into the risk assessment model to fuse multiresource information. For some indicators, which have only qualitative information or fragmentary statistical data, the cloud model theory was adopted to realize prior probability settings of the Bayesian network and thus made up for the deficiency in parameter settings. Finally, the inherent hazard of the South China Sea was assessed, as an example for the model, and two real piracy cases were studied to validate the proposed model. The assessment model constructed here can be applied to all cases, similar to the ones studied here.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom