z-logo
open-access-imgOpen Access
Real-Time Multipath Mitigation in Multi-GNSS Short Baseline Positioning via CNN-LSTM Method
Author(s) -
Tao Yuan,
Chao Liu,
Tianyang Chen,
Xingwang Zhao,
Chunyang Liu,
Haojie Hu,
Tengfei Zhou,
Haiqiang Xin
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/6573230
Subject(s) - gnss applications , multipath propagation , multipath mitigation , computer science , global positioning system , real time computing , sidereal time , remote sensing , algorithm , geography , telecommunications , physics , channel (broadcasting) , astrophysics
Multipath is the main systematic error of the Global Navigation Satellite System (GNSS) short baseline positioning. Multipath cannot be eliminated by the double-differenced technique and is difficult to parameterize, which severely restrict the high-precision GNSS positioning application. Based on the spatiotemporal repeatability of multipath, the sidereal filtering in coordinate-domain (SF-CD), the sidereal filtering in observation-domain (SF-OD), and the multipath hemispherical map (MHM) can be used to mitigate the multipath in real-time. However, the multipath model with large matrix for multi-GNSS multipath mitigation is difficult to achieve lightweight calculation and the SF-CD cannot be applied to mitigate the multi-GNSS multipath. In this paper, we propose a new multipath mitigation strategy in the coordinate-domain that shakes off the formation mechanism of multipath, a CNN (convolutional neural network)-LSTM (long short-term memory) method is used to mine the deep multipath features in GNSS coordinate series. Furthermore, multipath will be mitigated in real-time by constantly predicting the value of the next epoch. The experimental results show that the CNN-LSTM effectively mitigates the multi-GNSS multipath. The method can reduce the average RMS (root-mean square) of multi-GNSS positioning errors in the east, north, and vertical directions by 62.3%, 70.8%, and 66.0%. Moreover, comparing with the SF-CD, SF-OD, and MHM, CNN-LSTM can more effectively mitigate the effects of the GPS multipath, and the ability of multipath mitigation is almost not affected over time.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom