z-logo
open-access-imgOpen Access
Synthesis of Novel Thiazolyl Hydrazine Derivatives and Their Antifungal Activity
Author(s) -
Jianjun Zhu,
Yazhen Chen,
SU Fen,
Peiyi Wang
Publication year - 2021
Publication title -
journal of chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.436
H-Index - 50
eISSN - 2090-9063
pISSN - 2090-9071
DOI - 10.1155/2021/6563871
Subject(s) - sclerotinia sclerotiorum , fusarium oxysporum , chemistry , ec50 , carbendazim , fungicide , antifungal , mycelium , hydrazine (antidepressant) , gibberella zeae , botryosphaeria dothidea , verticillium dahliae , fusarium , horticulture , in vitro , microbiology and biotechnology , biochemistry , biology
A series of novel thiazolyl hydrazine derivatives 3a–3o were synthesized and evaluated for their in vitro antifungal activity against six phytopathogenic strains, namely, Botryosphaeria dothidea (B. d.), Gibberella sanbinetti (G. s.), Fusarium oxysporum (F. o.), Thanatephorus cucumeris (T. c.), Sclerotinia sclerotiorum (S. s.), and Verticillium dahliae (V. d.), by the classical mycelial growth rate method. Biological assessment results showed that most of these target compounds showed good antifungal activity toward tested strains. Especially, compound 3l showed excellent antifungal activities against B. d. and G. s. with relatively lower EC50 values of 0.59 and 0.69 µg/mL, respectively, which were extremely superior to those of commercial fungicides fluopyram, boscalid, and hymexazol and were comparable to those of carbendazim. Given the excellent bioactivity of designed compounds, this kind of thiazolyl hydrazine framework can provide a suitable point for exploring highly efficient antifungal agents.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom