z-logo
open-access-imgOpen Access
A Novel Method for Conflict Data Fusion Using an Improved Belief Divergence Measure in Dempster–Shafer Evidence Theory
Author(s) -
Yifan Liu,
Tiantian Bao,
Huiyun Sang,
Zhaokun Wei
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/6558843
Subject(s) - dempster–shafer theory , credibility , sensor fusion , entropy (arrow of time) , artificial intelligence , measure (data warehouse) , robustness (evolution) , divergence (linguistics) , kullback–leibler divergence , counterintuitive , computer science , mathematics , data mining , machine learning , epistemology , philosophy , biochemistry , physics , chemistry , linguistics , quantum mechanics , gene
Dempster–Shafer (D-S) evidence theory plays an important role in multisource data fusion. Due to the nature of the Dempster combination rule, there can be counterintuitive results when fusing highly conflicting evidence data. To date, conflict management in D-S evidence theory is still an open issue. Inspired by evidence modification considering internal indeterminacy and external support, a novel method for conflict data fusion is proposed based on an improved belief divergence, evidence distance, and belief entropy. First, an improved belief divergence measure is defined to characterize the discrepancy and conflict between bodies of evidence (BOEs). Second, evidence credibility is generated to describe the external support based on the complementary advantages of the improved belief divergence and evidence distance. Third, belief entropy is utilized to quantify the internal indeterminacy and further determine evidence weight. Lastly, the classical Dempster combination rule is applied to fuse the BOEs modified by their credibility degrees and weights. As the results of numerical examples and an application show, the proposed divergence measure can overcome the invalidity of the existing measures in some special cases. Additionally, the proposed fusion method recognizes the correct target with the highest belief value of 98.96%, which outperforms other related methods in conflict management. The proposed fusion method also displays better convergence, validity, and robustness.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom