Comprehensive Assessment of the Effect of Water Pressure on the Development of Cracks in Gravity Concrete Dams
Author(s) -
Hamed Safayenikoo
Publication year - 2021
Publication title -
shock and vibration
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.418
H-Index - 45
eISSN - 1875-9203
pISSN - 1070-9622
DOI - 10.1155/2021/6535365
Subject(s) - gravity dam , cracking , ultimate tensile strength , geotechnical engineering , nonlinear system , strength reduction , structural engineering , infiltration (hvac) , hydraulic fracturing , environmental science , materials science , geology , engineering , finite element method , composite material , physics , quantum mechanics
In recent years, extensive studies have been conducted to ensure the safety and stability of concrete dams. The development of numerical methods in considering more factors affecting the response of dams and also increasing the accuracy of calculation methods has played an important role in ensuring the safety of concrete dams. Therefore, one of the most important points in the design and analysis of concrete dams is to predict the location of cracks, expand it, investigate the phenomenon of hydraulic failure, consider the pressure caused by the infiltration of reservoir water into cracks and joints in static and dynamic states, and find solutions prevention of dam destruction due to this phenomenon. In the study of the effect of tensile strength, with increasing tensile strength, the reservoir water level increases at the beginning of cracking and the final reservoir water level increases, but there is no linear relationship between tensile strength and the two responses. In general, in examining the refractive energy parameter in each of the states with and without taking into account the water pressure inside the crack, the results of the mentioned models are slightly different from each other, but comparing the results shows that in nonlinear analysis considering water pressure inside the crack failure energy change has a greater impact on the results of these models.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom