z-logo
open-access-imgOpen Access
Synthetic Evaluation of MicroRNA-1-3p Expression in Head and Neck Squamous Cell Carcinoma Based on Microarray Chips and MicroRNA Sequencing
Author(s) -
Yubing Chen,
Mingjiang Liu,
Jin Hu,
Bo Peng,
Luo Dai,
Sifan Wang,
Hao Xing,
Baoju Wang,
Zhan Wu
Publication year - 2021
Publication title -
biomed research international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.772
H-Index - 126
eISSN - 2314-6141
pISSN - 2314-6133
DOI - 10.1155/2021/6529255
Subject(s) - head and neck squamous cell carcinoma , microrna , carcinogenesis , kegg , biology , cancer research , computational biology , bioinformatics , cancer , gene expression , gene , head and neck cancer , transcriptome , genetics
Background MicroRNA-1-3p (miR-1-3p) exerts significant regulation in various tumor cells, but its molecular mechanisms in head and neck squamous cell carcinoma (HNSCC) are still ill defined. This study is aimed at detecting the expression of miR-1-3p in HNSCC and at determining its significant regulatory pathways.Methods Data were obtained from the Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), Oncomine, ArrayExpress, Sequence Read Archive (SRA) databases, and additional literature. Expression values of miR-1-3p in HNSCC were analyzed comprehensively. The R language software was employed to screen differentially expressed genes, and bioinformatics assessment was performed. One sequence dataset (HNSCC: n = 484; noncancer: n = 44) and 18 chip datasets (HNSCC: n = 656; noncancer: n = 199) were obtained.Results The expression of miR-1-3p in HNSCC was visibly decreased in compare with noncancerous tissues. There were distinct differences in tumor state ( P = 0.0417), pathological stage ( P = 0.0058), and T stage ( P = 0.0044). Comprehensive analysis of sequence and chip data also indicated that miR-1-3p was lowly expressed in HNSCC. The diagnostic performance of miR-1-3p in HNSCC is reflected in the sensitivity and specificity of the collection, etc. Bioinformatics analysis showed the possible biological process, cellular component, molecular function, and KEGG pathways of miR-1-3p in HNSCC. And ITGB4 was a possible target of miR-1-3p. Conclusions miR-1-3p's low expression may facilitate tumorigenesis and evolution in HNSCC through signaling pathways. ITGB4 may be a key gene in targeting pathways but still needs verification through in vitro experiments.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom