z-logo
open-access-imgOpen Access
A New Triple Filtering Algorithm and Its Application for Aerial GNSS/INS-Integrated Direct Georeferencing System
Author(s) -
Qusen Chen,
Leilei Li,
Keyi Xu,
Xiangdong An,
Yu Wu
Publication year - 2021
Publication title -
journal of sensors
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.399
H-Index - 43
eISSN - 1687-7268
pISSN - 1687-725X
DOI - 10.1155/2021/6527356
Subject(s) - gnss applications , inertial navigation system , algorithm , observability , kalman filter , convergence (economics) , satellite system , computer science , inertial measurement unit , filter (signal processing) , global positioning system , computer vision , artificial intelligence , mathematics , orientation (vector space) , telecommunications , geometry , economics , economic growth
A global navigation satellite system and inertial navigation system- (GNSS/INS-) integrated system is employed to provide direct georeferencing (DG) in aerial photogrammetry. However, GNSS/INS suffers from stochastic error, strong nonlinearity, and weak observability problems in high dynamic or less maneuver scenarios. In this paper, we proposed a new triple filtering algorithm for aerial GNSS/INS integration. The new algorithm implements filtering in the sequence of forward, backward, and forward directions. Each filter is initialized by a previous filter to get a quick convergence, and the final result is combination of the last two filtering to smooth error. The proposed triple filtering strategy avoids inaccuracy in the 1st forward filtering when the system has not reached convergence. Moreover, it facilitates engineering implementation because backward filtering can employ the same equations with forward filtering. To assess stochastic error of the inertial measurement unit, the Allan variance method is used and abbreviated stochastic model is built. A real aerial testing is conducted, and the result indicates that DG can achieve horizontal accuracy of 5 cm by the proposed algorithm, which has 63% improvement compared to standard extended Kalman filter.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom