z-logo
open-access-imgOpen Access
EEG‐Based Personality Prediction Using Fast Fourier Transform and DeepLSTM Model
Author(s) -
Harshit Bhardwaj,
Pradeep Tomar,
Aditi Sakalle,
Wubshet Ibrahim
Publication year - 2021
Publication title -
computational intelligence and neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.605
H-Index - 52
eISSN - 1687-5273
pISSN - 1687-5265
DOI - 10.1155/2021/6524858
Subject(s) - computer science , artificial intelligence , electroencephalography , personality , big five personality traits , trait , artificial neural network , deep learning , clips , machine learning , pattern recognition (psychology) , psychology , social psychology , psychiatry , programming language
In this paper, a deep long short term memory (DeepLSTM) network to classify personality traits using the electroencephalogram (EEG) signals is implemented. For this research, the Myers–Briggs Type Indicator (MBTI) model for predicting personality is used. There are four groups in MBTI, and each group consists of two traits versus each other; i.e., out of these two traits, every individual will have one personality trait in them. We have collected EEG data using a single NeuroSky MindWave Mobile 2 dry electrode unit. For data collection, 40 Hindi and English video clips were included in a standard database. All clips provoke various emotions, and data collection is focused on these emotions, as the clips include targeted, inductive scenes of personality. Fifty participants engaged in this research and willingly agreed to provide brain signals. We compared the performance of our deep learning DeepLSTM model with other state-of-the-art-based machine learning classifiers such as artificial neural network (ANN), K-nearest neighbors (KNN), LibSVM, and hybrid genetic programming (HGP). The analysis shows that, for the 10-fold partitioning method, the DeepLSTM model surpasses the other state-of-the-art models and offers a maximum classification accuracy of 96.94%. The proposed DeepLSTM model was also applied to the publicly available ASCERTAIN EEG dataset and showed an improvement over the state-of-the-art methods.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom