z-logo
open-access-imgOpen Access
Improved Impossible Differentials and Zero-Correlation Linear Hulls of New Structure III
Author(s) -
Jun He,
Xuan Shen,
Guoqiang Liu
Publication year - 2021
Publication title -
security and communication networks
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.446
H-Index - 43
eISSN - 1939-0114
pISSN - 1939-0122
DOI - 10.1155/2021/6515844
Subject(s) - linear cryptanalysis , block cipher , differential (mechanical device) , construct (python library) , differential cryptanalysis , impossible differential cryptanalysis , mathematics , matrix (chemical analysis) , linear span , permutation (music) , algorithm , computer science , block size , cryptography , discrete mathematics , materials science , physics , acoustics , engineering , composite material , programming language , aerospace engineering , computer security , key (lock)
Impossible differential cryptanalysis and zero-correlation linear cryptanalysis are two kinds of most effective tools for evaluating the security of block ciphers. In those attacks, the core step is to construct a distinguisher as long as possible. In this paper, we focus on the security of New Structure III, which is a kind of block cipher structure with excellent resistance against differential and linear attacks. While the best previous result can only exploit one-round linear layer P to construct impossible differential and zero-correlation linear distinguishers, we try to exploit more rounds to find longer distinguishers. Combining the Miss-in-the-Middle strategy and the characteristic matrix method proposed at EUROCRYPT 2016, we could construct 23-round impossible differentials and zero-correlation linear hulls when the linear layer P satisfies some restricted conditions. To our knowledge, both of them are 1 round longer than the best previous works concerning the two cryptanalytical methods. Furthermore, to show the effectiveness of our distinguishers, the linear layer of the round function is specified to the permutation matrix of block cipher SKINNY which was proposed at CRYPTO 2016. Our results indicate that New Structure III has weaker resistance against impossible differential and zero-correlation linear attacks, though it possesses good differential and linear properties.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom