Adaptive Spiral Flying Sparrow Search Algorithm
Author(s) -
Chengtian Ouyang,
Yaxian Qiu,
Donglin Zhu
Publication year - 2021
Publication title -
scientific programming
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.269
H-Index - 36
eISSN - 1875-919X
pISSN - 1058-9244
DOI - 10.1155/2021/6505253
Subject(s) - computer science , motion planning , search algorithm , population , mathematical optimization , algorithm , swarm intelligence , local search (optimization) , path (computing) , particle swarm optimization , robot , artificial intelligence , mathematics , demography , sociology , programming language
The sparrow search algorithm is a new type of swarm intelligence optimization algorithm with better effect, but it still has shortcomings such as easy to fall into local optimality and large randomness. In order to solve these problems, this paper proposes an adaptive spiral flying sparrow search algorithm (ASFSSA), which reduces the probability of getting stuck into local optimum, has stronger optimization ability than other algorithms, and also finds the shortest and more stable path in robot path planning. First, the tent mapping based on random variables is used to initialize the population, which makes the individual position distribution more uniform, enlarges the workspace, and improves the diversity of the population. Then, in the discoverer stage, the adaptive weight strategy is integrated with Levy flight mechanism, and the fusion search method becomes extensive and flexible. Finally, in the follower stage, a variable spiral search strategy is used to make the search scope of the algorithm more detailed and increase the search accuracy. The effectiveness of the improved algorithm ASFSSA is verified by 18 standard test functions. At the same time, ASFSSA is applied to robot path planning. The feasibility and practicability of ASFSSA are verified by comparing the algorithms in the raster map planning routes of two models.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom