z-logo
open-access-imgOpen Access
Learning Air Traffic as Images: A Deep Convolutional Neural Network for Airspace Operation Complexity Evaluation
Author(s) -
Hua Xie,
Minghua Zhang,
Jiaming Ge,
Xinfang Dong,
Haiyan Chen
Publication year - 2021
Publication title -
complexity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.447
H-Index - 61
eISSN - 1099-0526
pISSN - 1076-2787
DOI - 10.1155/2021/6457246
Subject(s) - convolutional neural network , computer science , artificial intelligence , deep learning , air traffic control , aerospace engineering , engineering
A sector is a basic unit of airspace whose operation is managed by air traffic controllers. The operation complexity of a sector plays an important role in air traffic management system, such as airspace reconfiguration, air traffic flow management, and allocation of air traffic controller resources. Therefore, accurate evaluation of the sector operation complexity (SOC) is crucial. Considering there are numerous factors that can influence SOC, researchers have proposed several machine learning methods recently to evaluate SOC by mining the relationship between factors and complexity. However, existing studies rely on hand-crafted factors, which are computationally difficult, specialized background required, and may limit the evaluation performance of the model. To overcome these problems, this paper for the first time proposes an end-to-end SOC learning framework based on deep convolutional neural network (CNN) specifically for free of hand-crafted factors environment. A new data representation, i.e., multichannel traffic scenario image (MTSI), is proposed to represent the overall air traffic scenario. A MTSI is generated by splitting the airspace into a two-dimension grid map and filled with navigation information. Motivated by the applications of deep learning network, the specific CNN model is introduced to automatically extract high-level traffic features from MTSIs and learn the SOC pattern. Thus, the model input is determined by combining multiple image channels composed of air traffic information, which are used to describe the traffic scenario. The model output is SOC levels for the target sector. The experimental results using a real dataset from the Guangzhou airspace sector in China show that our model can effectively extract traffic complexity information from MTSIs and achieve promising performance than traditional machine learning methods. In practice, our work can be flexibly and conveniently applied to SOC evaluation without the additional calculation of hand-crafted factors.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom