z-logo
open-access-imgOpen Access
Multiobjective Particle Swarm Optimization Based on Cosine Distance Mechanism and Game Strategy
Author(s) -
Nana Li,
Yanmin Liu,
Qijun Shi,
Shihua Wang,
Kangge Zou
Publication year - 2021
Publication title -
computational intelligence and neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.605
H-Index - 52
eISSN - 1687-5273
pISSN - 1687-5265
DOI - 10.1155/2021/6440338
Subject(s) - particle swarm optimization , multi objective optimization , benchmark (surveying) , mathematical optimization , computer science , multi swarm optimization , swarm behaviour , pareto principle , set (abstract data type) , optimization problem , convergence (economics) , selection (genetic algorithm) , trigonometric functions , metaheuristic , mathematics , artificial intelligence , economic growth , economics , programming language , geography , geometry , geodesy
The optimization problems are taking place at all times in actual lives. They are divided into single objective problems and multiobjective problems. Single objective optimization has only one objective function, while multiobjective optimization has multiple objective functions that generate the Pareto set. Therefore, to solve multiobjective problems is a challenging task. A multiobjective particle swarm optimization, which combined cosine distance measurement mechanism and novel game strategy, has been proposed in this article. The cosine distance measurement mechanism was adopted to update Pareto optimal set in the external archive. At the same time, the candidate set was established so that Pareto optimal set deleted from the external archive could be effectively replaced, which helped to maintain the size of the external archive and improved the convergence and diversity of the swarm. In order to strengthen the selection pressure of leader, this article combined with the game update mechanism, and a global leader selection strategy that integrates the game strategy including the cosine distance mechanism was proposed. In addition, mutation was used to maintain the diversity of the swarm and prevent the swarm from prematurely converging to the true Pareto front. The performance of the proposed competitive multiobjective particle swarm optimizer was verified by benchmark comparisons with several state-of-the-art multiobjective optimizer, including seven multiobjective particle swarm optimization algorithms and seven multiobjective evolutionary algorithms. Experimental results demonstrate the promising performance of the proposed algorithm in terms of optimization quality.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom