z-logo
open-access-imgOpen Access
Low‐Cost Multisensor Integrated System for Online Walking Gait Detection
Author(s) -
Lingyun Yan,
Guowu Wei,
Zheqi Hu,
Haohua Xiu,
Yuyang Wei,
Lei Ren
Publication year - 2021
Publication title -
journal of sensors
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.399
H-Index - 43
eISSN - 1687-7268
pISSN - 1687-725X
DOI - 10.1155/2021/6378514
Subject(s) - gait , computer science , gait analysis , physical medicine and rehabilitation , artificial intelligence , medicine
A three-dimensional motion capture system is a useful tool for analysing gait patterns during walking or exercising, and it is frequently applied in biomechanical studies. However, most of them are expensive. This study designs a low-cost gait detection system with high accuracy and reliability that is an alternative method/equipment in the gait detection field to the most widely used commercial system, the virtual user concept (Vicon) system. The proposed system integrates mass-produced low-cost sensors/chips in a compact size to collect kinematic data. Furthermore, an x86 mini personal computer (PC) running at 100 Hz classifies motion data in real-time. To guarantee gait detection accuracy, the embedded gait detection algorithm adopts a multilayer perceptron (MLP) model and a rule-based calibration filter to classify kinematic data into five distinct gait events: heel-strike, foot-flat, heel-off, toe-off, and initial-swing. To evaluate performance, volunteers are requested to walk on the treadmill at a regular walking speed of 4.2 km/h while kinematic data are recorded by a low-cost system and a Vicon system simultaneously. The gait detection accuracy and relative time error are estimated by comparing the classified gait events in the study with the Vicon system as a reference. The results show that the proposed system obtains a high accuracy of 99.66% with a smaller time error (32 ms), demonstrating that it performs similarly to the Vicon system in the gait detection field.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom