Improved Results on Delay-Dependent Robust Control of Uncertain Neutral Systems with Mixed Time-Varying Delays
Author(s) -
Jingsha Zhang,
Yongke Li,
Xiaolin Ma,
Zhilong Lin,
Changlong Wang
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/6360923
Subject(s) - matlab , state (computer science) , toolbox , mathematics , matrix (chemical analysis) , controller (irrigation) , control theory (sociology) , control (management) , computer science , algorithm , materials science , agronomy , composite material , biology , operating system , artificial intelligence , programming language
In this paper, the problem of the delay-dependent robust H ∞ control for a class of uncertain neutral systems with mixed time-varying delays is studied. Firstly, a robust delay-dependent asymptotic stability criterion is shown by linear matrix inequalities (LMIs) after introducing a new Lyapunov–Krasovskii functional (LKF). The LKF including vital terms is expected to obtain results of less conservatism by employing the technique of various efficient convex optimization algorithms and free matrices. Then, based on the obtained criterion, analyses for uncertain systems and H ∞ controller design are presented. Moreover, on the analysis of the state-feedback controller, different from the traditional method which multiplies the matrix inequality left and right by some matrix and its transpose, respectively, we can obtain the state-feedback gain directly by calculating the LMIs through the toolbox of MATLAB in this paper. Finally, the feasibility and validity of the method are illustrated by examples.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom