z-logo
open-access-imgOpen Access
Analyzing the Check-In Behavior of Visitors through Machine Learning Model by Mining Social Network’s Big Data
Author(s) -
Li Hou,
Qi Liu,
Jamel Nebhen,
Mueen Uddin,
Mujahid Ullah,
Naimat Ullah Khan
Publication year - 2021
Publication title -
computational and mathematical methods in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.462
H-Index - 48
eISSN - 1748-6718
pISSN - 1748-670X
DOI - 10.1155/2021/6323357
Subject(s) - geolocation , microblogging , social media , computer science , kernel density estimation , downtown , big data , geographic information system , data science , social network (sociolinguistics) , statistic , data mining , variety (cybernetics) , artificial intelligence , machine learning , geography , world wide web , statistics , cartography , mathematics , archaeology , estimator
The current article paper is aimed at assessing and comparing the seasonal check-in behavior of individuals in Shanghai, China, using location-based social network (LBSN) data and a variety of spatiotemporal analytic techniques. The article demonstrates the uses of location-based social network’s data by analyzing the trends in check-ins throughout a three-year term for health purpose. We obtained the geolocation data from Sina Weibo, one of the biggest renowned Chinese microblogs (Weibo). The composed data is converted to geographic information system (GIS) type and assessed using temporal statistical analysis and spatial statistical analysis using kernel density estimation (KDE) assessment. We have applied various algorithms and trained machine learning models and finally satisfied with sequential model results because the accuracy we got was leading amongst others. The location cataloguing is accomplished via the use of facts about the characteristics of physical places. The findings demonstrate that visitors’ spatial operations are more intense than residents’ spatial operations, notably in downtown. However, locals also visited outlying regions, and tourists’ temporal behaviors vary significantly while citizens’ movements exhibit a more steady stable behavior. These findings may be used in destination management, metro planning, and the creation of digital cities.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom