miR-30a-5p Regulates Viability, Migration, and Invasion of Lung Adenocarcinoma Cells via Targeting ECT2
Author(s) -
Sangsang Chen,
Xuqing Zhu,
Jing Zheng,
Tingting Xu,
Yinmin Xu,
Feng Chen
Publication year - 2021
Publication title -
computational and mathematical methods in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.462
H-Index - 48
eISSN - 1748-6718
pISSN - 1748-670X
DOI - 10.1155/2021/6241469
Subject(s) - adenocarcinoma , cancer research , downregulation and upregulation , microrna , viability assay , western blot , biology , cell , cancer , oncology , gene , medicine , genetics
Objective The abnormal expression of epithelial cell transforming sequence 2 (ECT2) is often considered the driving factor for the growth and invasion of tumors. This study was performed to investigate the regulatory effect of miR-30a-5p and ECT2 on lung adenocarcinoma (LUAD), which provides a basis for the effective clinical treatment of LUAD.Methods The mature miRNAs, expression data of mRNAs, and clinical data of LUAD were downloaded from The Cancer Genome Atlas (TCGA). The expression levels of ECT2 mRNA and miR-30a-5p in cancer cell lines were detected by qRT-PCR. Western blot was performed to test the expression of ECT2 protein. The targeting relationship between miR-30a-5p and ECT2 was verified by dual-luciferase assay. The CCK-8 method and Transwell assay were conducted to test the viability, migratory, and invasive abilities of cells.Results ECT2 expression was upregulated in LUAD and was significantly correlated with the LUAD clinical stage and pathologic T stage, and the expression of its upstream regulatory gene miR-30a-5p was downregulated. miR-30a-5p targeted ECT2 in LUAD. Downregulation of ECT2 could inhibit the viability, migration, and invasion of LUAD cells, which could be reversed by simultaneously suppressing the expression of miR-30a-5p.Conclusion Our results suggested that miR-30a-5p repressed the malignant progression of LUAD via downregulating ECT2. miR-30a-5p and ECT2 may be effective targets for LUAD patients.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom