z-logo
open-access-imgOpen Access
Systematically Deciphering the Pharmacological Mechanism of Fructus Aurantii via Network Pharmacology
Author(s) -
Qionglong Jin,
Jie Lu,
Renhui Gao,
Jiaying Xu,
Xiaoyan Pan,
Lichang Wang
Publication year - 2021
Publication title -
evidence-based complementary and alternative medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.552
H-Index - 90
eISSN - 1741-4288
pISSN - 1741-427X
DOI - 10.1155/2021/6236135
Subject(s) - pi3k/akt/mtor pathway , akt1 , protein kinase b , biology , apoptosis , signal transduction , pharmacology , cancer research , chemistry , microbiology and biotechnology , biochemistry
Fructus Aurantii (FA) is a traditional herbal medicine that has been widely used for thousands of years in China and possesses a variety of pharmacological effects. However, the active ingredients in FA and the potential mechanisms of its therapeutic effects have not been fully explored. Here, we applied a network pharmacology approach to explore the potential mechanisms of FA. We identified 5 active compounds from FA and a total of 209 potential targets to construct a protein-protein interaction (PPI) network. Prostaglandin G/H synthase 2 (PTGS2), heat shock protein 90 (HSP90), cell division protein kinase 6 (CDK6), caspase 3 (CASP3), apoptosis regulator Bcl-2 (Bcl-2), and matrix metalloproteinase-9 (MMP9) were identified as key targets of FA in the treatment of multiple diseases. Gene ontology (GO) enrichment demonstrated that FA was highly related to transcription initiation from RNA polymerase II promoter, DNA-templated transcription, positive regulation of transcription, regulation of apoptosis process, and regulation of cell proliferation. Various signaling pathways involved in the treatment of FA were identified, including pathways in cancer and pathways specifically related to prostate cancer, colorectal cancer, PI3K-Akt, apoptosis, and non-small-cell lung cancer. TP53, AKT1, caspase 3, MAPK3, PTGS2, and BAX/BCL2 were related key targets in the identified enriched pathways and the PPI network. In addition, our molecular docking results showed that the bioactive compounds in FA can tightly bind to most target proteins. This article reveals via network pharmacology research the possible mechanism(s) by which FA exerts its activities in the treatment of various diseases and lays a foundation for further experiments and the development of a rational clinical application of FA.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom