EPCT: An Efficient Privacy-Preserving and Collusion-Resisting Top- Query Processing in WSNs
Author(s) -
Qian Zhou,
Hua Dai,
JianGuo Zhou,
Rongqi Qi,
Geng Yang,
Xun Yi
Publication year - 2021
Publication title -
security and communication networks
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.446
H-Index - 43
eISSN - 1939-0114
pISSN - 1939-0122
DOI - 10.1155/2021/6234409
Subject(s) - collusion , computer science , theoretical computer science , business , industrial organization
Data privacy threat arises during providing top- k query processing in the wireless sensor networks. This article presents an efficient privacy-preserving and collusion-resisting top- k (EPCT) query processing protocol. A minimized candidate encrypted dataset determination model is first designed, which is the foundation of EPCT. The model guides the idea of query processing and guarantees the correctness of the protocol. The symmetric encryption with different private key in each sensor is deployed to protect the privacy of sensory data even a few sensors in the networks have been colluding with adversaries. Based on the above model and security setting, two phases of interactions between the interested sensors and the sink are designed to implement the secure query processing protocol. The security analysis shows that the proposed protocol is capable of providing secure top- k queries in the manner of privacy protection and anticollusion, whereas the experimental result indicates that the protocol outperforms the existing works on communication overhead.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom