A High-Dimensional Modeling System Based on Analytical Hierarchy Process and Information Criteria
Author(s) -
Tuba Koç
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/6198317
Subject(s) - data mining , analytic hierarchy process , computer science , process (computing) , hierarchy , mathematics , operations research , economics , market economy , operating system
High-dimensional data sets frequently occur in several scientific areas, and special techniques are required to analyze these types of data sets. Especially, it becomes important to apply a suitable model in classification problems. In this study, a novel approach is proposed to estimate a statistical model for high-dimensional data sets. The proposed method uses analytical hierarchical process (AHP) and information criteria for determining the optimal PCs for the classification model. The high-dimensional “colon” and “gravier” datasets were used in evaluation part. Application results demonstrate that the proposed approach can be successfully used for modeling purposes.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom