z-logo
open-access-imgOpen Access
Experimental Study and Numerical Study on Shear Bearing Capacity of Shear Key Joints of Reinforced Concrete Open‐Web Sandwich Plates
Author(s) -
Hongna Lu,
Huagang Zhang,
Kejian Ma,
Qin Wu,
Lan Jiang
Publication year - 2021
Publication title -
advances in materials science and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.356
H-Index - 42
eISSN - 1687-8442
pISSN - 1687-8434
DOI - 10.1155/2021/6197472
Subject(s) - stirrup , shear (geology) , materials science , chord (peer to peer) , structural engineering , finite element method , bearing capacity , composite material , geotechnical engineering , computer science , geology , engineering , distributed computing
The shear key in the reinforced concrete open-web sandwich plate (RCOSP) is a block joint that connects with the top chord and the bottom chord. In order to understand the failure mode of the shear key and verify the accuracy of the current algorithm, a total of 9 test pieces are prepared and classified 3 groups were assigned longitudinal reinforcement (LR) ratios of 0.49%, 0.82%, and 1.24%, respectively. The horizontal concentrated static loading under simple support condition is carried out. The test results show that the shear key is horizontally cut and the concrete is pulled apart or crushed along the direction of chord width at the shear key-chords area; the strain level of the concrete and stirrup of the shear key is lower averagely; the development of the horizontal displacement and the strain of the longitudinal bars of the test pieces goes through elastic, elastoplastic, and plastic stages; the ultimate load of the test pieces has almost no relationship with the reinforcement ratio of shear key but is controlled by the degree of crack development in the area where shear key connects with the chords. To avoid the current algorithm overestimating the shear capacity of shear key, the restricted condition of shear section is proposed. The finite element analysis (FEA) further verifies that the restricted condition of shear section proposed in this paper is reasonable and necessary.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom