z-logo
open-access-imgOpen Access
Efficient Noninteractive Outsourcing of Large-Scale QR and LU Factorizations
Author(s) -
Lingzan Yu,
Yanli Ren,
Guorui Feng,
Xinpeng Zhang
Publication year - 2021
Publication title -
security and communication networks
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.446
H-Index - 43
eISSN - 1939-0114
pISSN - 1939-0122
DOI - 10.1155/2021/6184920
Subject(s) - computer science , outsourcing , delegate , qr decomposition , computation , cloud computing , sparse matrix , overhead (engineering) , client side , matrix decomposition , algorithm , theoretical computer science , parallel computing , computer network , operating system , eigenvalues and eigenvectors , physics , quantum mechanics , political science , law , gaussian , programming language
QR and LU factorizations are two basic mathematical methods for decomposition and dimensionality reduction of large-scale matrices. However, they are too complicated to be executed for a limited client because of big data. Outsourcing computation allows a client to delegate the tasks to a cloud server with powerful resources and therefore greatly reduces the client’s computation cost. However, the previous methods of QR and LU outsourcing factorizations need multiple interactions between the client and cloud server or have low accuracy and efficiency in large-scale matrix applications. In this paper, we propose a noninteractive and efficient outsourcing algorithm of large-scale QR and LU factorizations. The proposed scheme is based on the specific perturbation method including a series of consecutive and sparse matrices, which can be used to protect the original matrix and obtain the results of factorizations. The generation and inversion of sparse matrix has small workloads on the client’s side, and the communication cost is also small since the client does not need to interact with the cloud server in the outsourcing algorithms. Moreover, the client can verify the outsourcing result with a probability of approximated to 1. The experimental results manifest that as for the client, the proposed algorithms reduce the computational overhead of direct computation successfully, and it is most efficient compare with the previous ones.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom