z-logo
open-access-imgOpen Access
Experimental Study on Percolation Rate Characteristics of Gas-Filled Coal Bodies Based on True Triaxial Condition
Author(s) -
Fukun Xiao,
Shan Lei,
Xufei Zhang,
Kai Xie
Publication year - 2021
Publication title -
shock and vibration
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.418
H-Index - 45
eISSN - 1875-9203
pISSN - 1070-9622
DOI - 10.1155/2021/6165198
Subject(s) - percolation (cognitive psychology) , materials science , strain rate , overburden pressure , deformation (meteorology) , coal , composite material , percolation threshold , stress (linguistics) , thermodynamics , geotechnical engineering , geology , chemistry , physics , quantum mechanics , neuroscience , electrical resistivity and conductivity , biology , linguistics , philosophy , organic chemistry
To research the percolation rate of gas-filled coal based on true triaxial condition, this paper uses the three-phase coupling true triaxial servo test device to carry out the seepage test of coal, and the percolation rate of coal under different conditions of three factors such as gas pressure was measured by Darcy’s law, and the variation of percolation rate of coal was studied based on the comprehensive consideration of thermal elastic swelling deformation, expansion deformation of adsorbed gas, and compression deformation of interstitial pressure. The results are as follows: (1) When the main stress and temperature maintain unchanged, the percolation rate presents the trend which first decreases and then becomes gentle with the gas pressure; when the gas pressure and main stress maintain unchanged, the percolation rate increases with the decrease of temperature; when the pressure and temperature maintain unchanged, the changes of percolation rate present a shape of “V” with the main stress. (2) The strain curve of gas-filled coal decreases at first and then increases; that is, the percolation rate decreases gradually when the strain increases at the compression phase and elastic phase, while the percolation rate increases with the increase of strain at the yield phase and failure phase. (3) In the process of increasing volume stress, the percolation rate decreases gradually in the pore compaction stage, the percolation rate increases gradually from crack propagation to peak failure stage, and then, the percolation rate increases significantly after the peak damage. According to the test results, the percolation rate and volume strain show an inverse proportion.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom