z-logo
open-access-imgOpen Access
A Robust Approach to CCRM Interval Regression considering Interval Coincidence Degree
Author(s) -
Yu Wang,
Yan Shilin
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/6140991
Subject(s) - coincidence , degree (music) , mathematics , interval (graph theory) , range (aeronautics) , statistics , maximization , disjoint sets , monte carlo method , mathematical optimization , mathematical analysis , combinatorics , physics , medicine , alternative medicine , materials science , pathology , acoustics , composite material
Traditional CCRMs (Constrained Center-and-Range Methods) in solving the problem of interval regression could hardly make tradeoffs between the overall fitting accuracy and the coincidence degree between the observed and predicted intervals and could also hardly reduce the number of disjoint elements between the observed and predicted intervals, as well as raise the average ratio of all predicted intervals contained within their observed intervals. This paper constructed a nonlinear regression model based on center-and-range method, in which the maximization of coincidence degree for the sample with the worst coincidence degree between the observed and predicted interval was incorporated into the traditional CCRM model’s objective. This novel nonlinear programming model was proven to be a convex one that satisfied K-T condition. Monte Carlo simulation shows that the model is degenerated to the compared CCRM+ model as the objective only contains the minimization of the overall fitting accuracy for both center and range sample series. In this situation, it could obtain a better solution than the use of the compared CCRM model. In addition, when the proposed model only takes into account the maximization of coincidence degree for the sample with the worst coincidence degree between the observed and predicted interval, the model shows a better performance than the CCRM+ model in terms of the average ratio of all predicted intervals contained within their observed intervals, as well as the average number of forecasts with 0% accuracy.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom