z-logo
open-access-imgOpen Access
Corneal Biomechanics Computational Analysis for Keratoconus Diagnosis
Author(s) -
Malik Bader Alazzam,
Ahmed Saeed AlGhamdi,
Sultan S. Alshamrani
Publication year - 2021
Publication title -
computational and mathematical methods in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.462
H-Index - 48
eISSN - 1748-6718
pISSN - 1748-670X
DOI - 10.1155/2021/6126503
Subject(s) - keratoconus , artificial intelligence , wavelet , histogram , computer science , pattern recognition (psychology) , computer vision , cornea , medicine , ophthalmology , image (mathematics)
For machine learning techniques to be used in early keratoconus diagnosis, researchers aimed to find and model representations of corneal biomechanical characteristics from exam images generated by the Corvis ST. Image segments were used to identify and convert anterior data into vectors for representation and representation of apparent posterior surfaces, apparent pachymetry, and the composition of apparent anterior data in images. Chained (batch images) and simplified with wavelet, the vectors were also arranged as 2D histograms for deep learning use in a neural network. An interval of 0.7843 to 1 and a significance level of 0.0157 were used in the scoring, with the classifications getting points for being as sensitive as they could be while also being as precise as they could be. In order to train and validate the used data from examination bases in Europe and Iraq, in grades I to IV, researchers looked at data from 686 healthy eyes and 406 keratoconus-afflicted eyes. With a score of 0.8247, sensitivity of 89.49%, and specificity of 92.09%, the European database found that apparent pachymetry from batch images applied with level 4 wavelet and processed quickly had the highest accuracy. This is a 2D histogram of apparent pachymetry with a score of 0.8361, which indicates that it is 88.58 percent sensitive and 94.389% specific. According to the findings, keratoconus can be diagnosed using biomechanical models.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom