z-logo
open-access-imgOpen Access
Evaluation of Feature Selection Methods for Mammographic Breast Cancer Diagnosis in a Unified Framework
Author(s) -
Chunjiang Tian,
Jian Lv,
Xiangfeng Xu
Publication year - 2021
Publication title -
biomed research international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.772
H-Index - 126
eISSN - 2314-6141
pISSN - 2314-6133
DOI - 10.1155/2021/6079163
Subject(s) - feature selection , breast cancer , feature (linguistics) , selection (genetic algorithm) , mammography , computer science , artificial intelligence , pattern recognition (psychology) , medicine , cancer , linguistics , philosophy
Over recent years, feature selection (FS) has gained more attention in intelligent diagnosis. This study is aimed at evaluating FS methods in a unified framework for mammographic breast cancer diagnosis. After FS methods generated rank lists according to feature importance, the framework added features incrementally as the input of random forest which performed as the classifier for breast lesion classification. In this study, 10 FS methods were evaluated and the digital database for screening mammography (1104 benign and 980 malignant lesions) was analyzed. The classification performance was quantified with the area under the curve (AUC), and accuracy, sensitivity, and specificity were also considered. Experimental results suggested that both infinite latent FS method (AUC, 0.866 ± 0.028) and RELIEFF (AUC, 0.855 ± 0.020) achieved good prediction (AUC ≥ 0.85) when 6 features were used, followed by correlation-based FS method (AUC, 0.867 ± 0.023) using 7 features and WILCOXON (AUC, 0.887 ± 0.019) using 8 features. The reliability of the diagnosis models was also verified, indicating that correlation-based FS method was generally superior over other methods. Identification of discriminative features among high-throughput ones remains an unavoidable challenge in intelligent diagnosis, and extra efforts should be made toward accurate and efficient feature selection.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom