z-logo
open-access-imgOpen Access
Paeoniflorin Improved Constipation in the Loperamide-Induced Rat Model via TGR5/TRPA1 Signaling-Mediated 5-Hydroxytryptamine Secretion
Author(s) -
Yu Zhan,
Yong Wen,
Liangliang Zhang,
Xu-long Shen,
Xiao-hui Chen,
Xiao-hai Wu,
Xuegui Tang
Publication year - 2021
Publication title -
evidence-based complementary and alternative medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.552
H-Index - 90
eISSN - 1741-4288
pISSN - 1741-427X
DOI - 10.1155/2021/6076293
Subject(s) - loperamide , paeoniflorin , chemistry , transient receptor potential channel , pharmacology , constipation , medicine , western blot , endocrinology , receptor , biochemistry , high performance liquid chromatography , chromatography , diarrhea , gene
Slow transit constipation (STC) is a common type of constipation with a high incidence rate and a large number of patients. We aimed to investigate the therapeutic effects and potential mechanism of paeoniflorin (PAE) on loperamide-induced Sprague Dawley (SD) rat constipation models. Rats with loperamide-induced constipation were orally administered different concentrations of PAE (10, 20, or 40 mg/kg). In vitro, enterochromaffin (EC)-like RIN-14B cells were treated with 20, 40, or 80 μg/ml PAE. We found that PAE treatment significantly improved the symptoms of constipation and increased the intestinal transit rate. Hematoxylin and eosin (H&E) staining showed that PAE alleviated colonic tissue pathological damage. Besides, our results implied that PAE concentration-dependently promoted the content of 5-hydroxytryptamine (5-HT) catalyzed by tryptophan hydroxylase (Tph)-1 in the serum of loperamide-induced rats and in RIN-14B cells. Western blot and immunofluorescence (IF) stain indicated that PAE also promoted the expression of G protein-coupled BA receptor 1 (TGR5), transient receptor potential ankyrin 1 (TRPA1), phospholipase C (PLC)-γ1, and phosphatidylinositol 4,5-bisphosphate (PIP2) in vivo and in vitro. RIN-14B cells were cotreated with a TGR5 inhibitor (SBI-115) to explore the mechanism of PAE in regulating the 5-HT secretion. We observed inhibition of TGR5 reversed the increase of 5-HT secretion induced by PAE in RIN-14B cells. We provided evidence that PAE could promote 5-HT release from EC cells and improve constipation by activating the TRPA1 channel and PLC-γ1/PIP2 signaling. Thus, PAE may provide therapeutic effects for patients with STC.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom