Forecasting Time‐Series Energy Data in Buildings Using an Additive Artificial Intelligence Model for Improving Energy Efficiency
Author(s) -
Ngoc-Son Truong,
Ngoc-Tri Ngo,
AnhDuc Pham
Publication year - 2021
Publication title -
computational intelligence and neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.605
H-Index - 52
eISSN - 1687-5273
pISSN - 1687-5265
DOI - 10.1155/2021/6028573
Subject(s) - mean absolute percentage error , mean absolute error , computer science , artificial neural network , support vector machine , photovoltaic system , predictive modelling , mean squared error , time series , energy (signal processing) , efficient energy use , approximation error , statistics , artificial intelligence , machine learning , mathematics , engineering , algorithm , electrical engineering
Building energy efficiency is important because buildings consume a significant energy amount. The study proposed additive artificial neural networks (AANNs) for predicting energy use in residential buildings. A dataset in hourly resolution was used to evaluate the AANNs model, which was collected from a residential building with a solar photovoltaic system. The proposed AANNs model achieved good predictive accuracy with 14.04% in mean absolute percentage error (MAPE) and 111.98 Watt-hour in the mean absolute error (MAE). Compared to the support vector regression (SVR), the AANNs model can significantly improve the accuracy which was 103.75% in MAPE. Compared to the ANNs model, accuracy improvement percentage by the AANNs model was 4.6% in MAPE. The AANNs model was the most effective forecasting model among the investigated models in predicting energy consumption, which provides building managers with a useful tool to improve energy efficiency in buildings.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom