Detection Performance Analysis of the Standard FDA and FDA-MIMO Radar in the Gaussian Background
Author(s) -
Yongze Liu,
Ma Yuehong,
Haiming Jing
Publication year - 2021
Publication title -
international journal of antennas and propagation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.282
H-Index - 37
eISSN - 1687-5877
pISSN - 1687-5869
DOI - 10.1155/2021/6001513
Subject(s) - mimo , clutter , radar , computer science , electronic engineering , likelihood ratio test , azimuth , range (aeronautics) , signal to noise ratio (imaging) , algorithm , engineering , statistics , telecommunications , mathematics , beamforming , aerospace engineering , geometry
This paper studies the optimal detection performance of the standard frequency diverse array (FDA) radar and FDA multi-input multioutput (FDA-MIMO) radar in Gaussian clutter and noise. Array signal processing scheme at the receiver is firstly designed to obtain the array steering vector containing range, azimuth, and frequency increment. For the two array configurations, namely, collocated transmit-receive and collocated transmit distributed receive, the likelihood ratio test statistics and the test statistic distributions are derived in the Neyman–Pearson sense. It is then investigated how the number of array elements influences the detection performance of various radar systems at low signal-to-noise ratio (SNR). Several numerical simulations are carried out to demonstrate that the performance improvement is hard for MIMO and FDA-MIMO by only increasing the number of transmit elements, while it is achievable for the FDA. The paper finally makes a comparative analysis for detection performances of five radar configurations under different SNRs.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom