z-logo
open-access-imgOpen Access
Plastic Gasket Defect Detection Based on Transfer Learning
Author(s) -
Xieyi Chen,
D.P. Wang,
Jinjun Shao,
Jun Fan
Publication year - 2021
Publication title -
scientific programming
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.269
H-Index - 36
eISSN - 1875-919X
pISSN - 1058-9244
DOI - 10.1155/2021/5990020
Subject(s) - overfitting , gasket , transfer of learning , convolutional neural network , artificial intelligence , computer science , deep learning , pattern recognition (psychology) , reliability (semiconductor) , machine learning , artificial neural network , computer vision , engineering , mechanical engineering , power (physics) , physics , quantum mechanics
To automatically detect plastic gasket defects, a set of plastic gasket defect visual detection devices based on GoogLeNet Inception-V2 transfer learning was designed and established in this study. The GoogLeNet Inception-V2 deep convolutional neural network (DCNN) was adopted to extract and classify the defect features of plastic gaskets to solve the problem of their numerous surface defects and difficulty in extracting and classifying the features. Deep learning applications require a large amount of training data to avoid model overfitting, but there are few datasets of plastic gasket defects. To address this issue, data augmentation was applied to our dataset. Finally, the performance of the three convolutional neural networks was comprehensively compared. The results showed that the GoogLeNet Inception-V2 transfer learning model had a better performance in less time. It means it had higher accuracy, reliability, and efficiency on the dataset used in this paper.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom