z-logo
open-access-imgOpen Access
Effect of Nitrogen-Doped Carbon Dots (NCDs) on the Characteristics of NCD/MIL-53(Fe) Composite and Its Photocatalytic Performance for Methylene Blue Degradation under Visible Light
Author(s) -
Ngoc Tue Nguyen,
Xuan Truong Nguyen,
Nguyễn Đức Trung,
Tran Hong Minh,
Thi May Nguyen,
Tran Thuong Quang
Publication year - 2021
Publication title -
adsorption science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.682
H-Index - 36
eISSN - 2048-4038
pISSN - 0263-6174
DOI - 10.1155/2021/5906248
Subject(s) - photocatalysis , methylene blue , composite number , catalysis , carbon fibers , degradation (telecommunications) , visible spectrum , metal organic framework , doping , chemistry , band gap , chemical engineering , materials science , nanotechnology , nuclear chemistry , composite material , adsorption , organic chemistry , optoelectronics , telecommunications , computer science , engineering
Metal-organic framework composites, which are combined from metal-organic framework and advanced carbon material, have drawn great attention in many fields of application such as environmental remediation and catalysts. Within this paper, the carbon/MIL-53(Fe) composite was fabricated via an in situ synthesis, in which N-containing carbon dots (NCDs) were mixed with MOF precursors’ solutions under various ratios before going through the solvothermal stage. It was showed that the introduction of a certain amount of NCDs would affect characteristic features and improve the photocatalytic performance of final products. The optimal doping content of NCDs in NCD/MIL-53(Fe) composite was determined. SEM images showed that the M-140 appeared as hexagonal bipyramid-shaped crystals with an average size of 700 nm. Compared with pristine MIL-53(Fe), the M-140 was more visibly light-responsive, and its calculated band gap energy was approximately 2.3 eV. In addition, M-140 catalyst also displayed more excellent photocatalytic activity for Methylene Blue degradation in a pH range from 5 to 7. Under optimal conditions, MB was achieved within 60 minutes and the removal rate was nearly 100% after 5 cycles. The photocatalytic mechanism of the obtained NCD/MIL-53(Fe) composite was discussed.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom