Effect of Nitrogen-Doped Carbon Dots (NCDs) on the Characteristics of NCD/MIL-53(Fe) Composite and Its Photocatalytic Performance for Methylene Blue Degradation under Visible Light
Author(s) -
Ngoc Tue Nguyen,
Xuan Truong Nguyen,
Nguyễn Đức Trung,
Tran Hong Minh,
Thi May Nguyen,
Tran Thuong Quang
Publication year - 2021
Publication title -
adsorption science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.682
H-Index - 36
eISSN - 2048-4038
pISSN - 0263-6174
DOI - 10.1155/2021/5906248
Subject(s) - photocatalysis , methylene blue , composite number , catalysis , carbon fibers , degradation (telecommunications) , visible spectrum , metal organic framework , doping , chemistry , band gap , chemical engineering , materials science , nanotechnology , nuclear chemistry , composite material , adsorption , organic chemistry , optoelectronics , telecommunications , computer science , engineering
Metal-organic framework composites, which are combined from metal-organic framework and advanced carbon material, have drawn great attention in many fields of application such as environmental remediation and catalysts. Within this paper, the carbon/MIL-53(Fe) composite was fabricated via an in situ synthesis, in which N-containing carbon dots (NCDs) were mixed with MOF precursors’ solutions under various ratios before going through the solvothermal stage. It was showed that the introduction of a certain amount of NCDs would affect characteristic features and improve the photocatalytic performance of final products. The optimal doping content of NCDs in NCD/MIL-53(Fe) composite was determined. SEM images showed that the M-140 appeared as hexagonal bipyramid-shaped crystals with an average size of 700 nm. Compared with pristine MIL-53(Fe), the M-140 was more visibly light-responsive, and its calculated band gap energy was approximately 2.3 eV. In addition, M-140 catalyst also displayed more excellent photocatalytic activity for Methylene Blue degradation in a pH range from 5 to 7. Under optimal conditions, MB was achieved within 60 minutes and the removal rate was nearly 100% after 5 cycles. The photocatalytic mechanism of the obtained NCD/MIL-53(Fe) composite was discussed.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom