z-logo
open-access-imgOpen Access
News Video Classification Model Based on ResNet-2 and Transfer Learning
Author(s) -
Yiping Gao
Publication year - 2021
Publication title -
security and communication networks
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.446
H-Index - 43
eISSN - 1939-0114
pISSN - 1939-0122
DOI - 10.1155/2021/5865200
Subject(s) - computer science , transfer of learning , convolutional neural network , gradient descent , field (mathematics) , artificial intelligence , machine learning , artificial neural network , convergence (economics) , maxima and minima , data mining , mathematical analysis , mathematics , pure mathematics , economics , economic growth
A large amount of useful information is included in the news video, and how to classify the news video information has become an important research topic in the field of multimedia technology. News videos are enormously informative, and employing manual classification methods is too time-consuming and vulnerable to subjective judgment. Therefore, developing an automated news video analysis and retrieval method becomes one of the most important research contents in the current multimedia information system. Therefore, this paper proposes a news video classification model based on ResNet-2 and transfer learning. First, a model-based transfer method was adopted to transfer the commonality knowledge of the pretrained model of the Inception-ResNet-v2 network on ImageNet, and a news video classification model was constructed. Then, a momentum update rule is introduced on the basis of the Adam algorithm, and an improved gradient descent method is proposed in order to obtain an optimal solution of the local minima of the function in the learning process. The experimental results show that the improved Adam algorithm can iteratively update the network weights through the adaptive learning rate to reach the fastest convergence. Compared with other convolutional neural network models, the modified Inception-ResNet-v2 network model achieves 91.47% classification accuracy for common news video datasets.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom