From Centralized Protection to Distributed Edge Collaboration: A Location Difference-Based Privacy-Preserving Framework for Mobile Crowdsensing
Author(s) -
Zihao Shao,
Huiqiang Wang,
Yifan Zou,
Zihan Gao,
Hongwu Lv
Publication year - 2021
Publication title -
security and communication networks
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.446
H-Index - 43
eISSN - 1939-0114
pISSN - 1939-0122
DOI - 10.1155/2021/5855745
Subject(s) - computer science , paillier cryptosystem , server , encryption , computer security , enhanced data rates for gsm evolution , privacy software , information privacy , information sensitivity , anonymity , homomorphic encryption , mobile device , computer network , public key cryptography , world wide web , artificial intelligence , hybrid cryptosystem
Mobile Crowdsensing (MCS) has evolved into an effective and valuable paradigm to engage mobile users to sense and collect urban-scale information. However, users risk their location privacy while reporting data with actual sensing locations. Existing works of location privacy-preserving are primarily based on single-region location information, which rely on a trusted and centralized sensing platform and ignore the impact of regional differences on user privacy-preserving demands. To tackle this issue, we propose a Location Difference-Based Privacy-Preserving Framework (LDPF), leveraging the powerful edge servers deployed between users and the sensing platform to hide and manage users according to regional user characteristics. More specifically, for popular regions, based on the edge servers and the k-anonymity algorithm, we propose a Coordinate Transformation and Bit Commitment (CTBC) privacy-preserving method that effectively guarantees the privacy of location data without relying on a trusted sensing platform. For remote regions, based on a more realistic distance calculation mode, we design a Paillier Encryption Data Coding (PDC) privacy-preserving method that realizes the secure computation for users’ location and prevents malicious users from deceiving. The theoretical analysis and simulation results demonstrate the security and efficiency of the proposed framework in location difference-based privacy-preserving.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom