Fractional Analysis of MHD Boundary Layer Flow over a Stretching Sheet in Porous Medium: A New Stochastic Method
Author(s) -
İmran Khan,
Hakeem Ullah,
Hussain AlSalman,
Mehreen Fiza,
Saeed Islam,
Muhammad Shoaib,
Muhammad Asif Zahoor Raja,
Abdu Gumaei,
Farkhanda Ikhlaq
Publication year - 2021
Publication title -
journal of function spaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.579
H-Index - 28
eISSN - 2314-8896
pISSN - 2314-8888
DOI - 10.1155/2021/5844741
Subject(s) - backpropagation , artificial neural network , convergence (economics) , algorithm , mean squared error , computer science , approximation error , flow (mathematics) , mathematics , artificial intelligence , statistics , economics , economic growth , geometry
In this article, an effective computing approach is presented by exploiting the power of Levenberg-Marquardt scheme (LMS) in a backpropagation learning task of artificial neural network (ANN). It is proposed for solving the magnetohydrodynamics (MHD) fractional flow of boundary layer over a porous stretching sheet (MHDFF BLPSS) problem. A dataset obtained by the fractional optimal homotopy asymptotic (FOHA) method is created as a simulated data simple for training (TR), validation (VD), and testing (TS) the proposed approach. The experiments are conducted by computing the results of mean-square-error (MSE), regression analysis (RA), absolute error (AE), and histogram error (HE) measures on the created dataset of FOHA solution. During the learning task, the parameters of trained model are adjusted by the efficacy of ANN backpropagation with the LMS (ANN-BLMS) approach. The ANN-BLMS performance of the modeled problem is verified by attaining the best convergence and attractive numerical results of evaluation measures. The experimental results show that the approach is effective for finding a solution of MHDFF BLPSS problem.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom