z-logo
open-access-imgOpen Access
Research on Classification Method of Network Resources Based on Modified SVM Algorithm
Author(s) -
Hao Zhang,
Jingchao Hu,
Yaodong Zhang
Publication year - 2021
Publication title -
security and communication networks
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.446
H-Index - 43
eISSN - 1939-0114
pISSN - 1939-0122
DOI - 10.1155/2021/5841829
Subject(s) - computer science , support vector machine , data mining , pattern recognition (psychology) , classifier (uml) , artificial intelligence , principal component analysis , sample (material) , algorithm , machine learning , chromatography , chemistry
According to the traditional classification method of network capital resources, there are some problems such as low efficiency, low recall rate, and low precision rate of information. Therefore, this paper proposes a new classification method of network capital resources based on SVM algorithm. Firstly, the original sample data are analyzed by principal component analysis to realize the design of resource classification process. Then, the dimension reduction of network resources data is realized by word segmentation and denoising. Thirdly, the reduced sample data are trained by the SVM classifier, and the best parameters of the reduced data are obtained by the grid search method. Lastly, the search range of SVM classifier parameters based on the original sample data is reset, so as to quickly obtain the best SVM classifier parameters of the original sample data and realize the classification. The experimental results show that this method can improve the recall and precision of network resource information and shorten the classification time of network resources.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom