z-logo
open-access-imgOpen Access
Vision‐Based Intelligent Perceiving and Planning System of a 7‐DoF Collaborative Robot
Author(s) -
Linfeng Xu,
Gang Li,
Peiheng Song,
Weixiang Shao
Publication year - 2021
Publication title -
computational intelligence and neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.605
H-Index - 52
eISSN - 1687-5273
pISSN - 1687-5265
DOI - 10.1155/2021/5810371
Subject(s) - computer science , artificial intelligence , robot , process (computing) , convolutional neural network , machine vision , computer vision , motion planning , set (abstract data type) , human–computer interaction , programming language , operating system
In this paper, an intelligent perceiving and planning system based on deep learning is proposed for a collaborative robot consisting of a 7-DoF (7-degree-of-freedom) manipulator, a three-finger robot hand, and a vision system, known as IPPS (intelligent perceiving and planning system). The lack of intelligence has been limiting the application of collaborative robots for a long time. A system to realize “eye-brain-hand” process is crucial for the true intelligence of robots. In this research, a more stable and accurate perceiving process was proposed. A well-designed camera system as the vision system and a new hand tracking method were proposed for operation perceiving and recording set establishment to improve the applicability. A visual process was designed to improve the accuracy of environment perceiving. Besides, a faster and more precise planning process was proposed. Deep learning based on a new CNN (convolution neural network) was designed to realize intelligent grasping planning for robot hand. A new trajectory planning method of the manipulator was proposed to improve efficiency. The performance of the IPPS was tested with simulations and experiments in a real environment. The results show that IPPS could effectively realize intelligent perceiving and planning for the robot, which could realize higher intelligence and great applicability for collaborative robots.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom