z-logo
open-access-imgOpen Access
The Planar Wide-Frequency Vibration Characteristics of Heavy-Load Radial Tires
Author(s) -
Hongjie Cheng,
Lei Gao,
Zhihao Liu,
Qinhe Gao,
Xiuyu Liu
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/5805292
Subject(s) - piecewise , planar , vibration , structural engineering , hammer , modal , modal analysis , transfer function , beam (structure) , materials science , mathematics , engineering , acoustics , physics , mathematical analysis , computer science , composite material , electrical engineering , computer graphics (images)
This paper investigates the planar wide-frequency vibration characteristics of heavy-load radial tires with a large aspect ratio. A proposed tire model with a piecewise flexible beam on an elastic foundation is investigated and validated using experimental modal analysis and theoretical modeling method. The reproducibility of frequency response functions below 400 Hz is discussed. The experimental modal analysis particularly assesses the coupling of features across the circumferential and cross-sectional directions of heavy-load radial tire carcass. Piecewise circumferential modal characteristics were investigated experimentally, leading to the suggestion of a piecewise flexible beam on an elastic tire foundation. Using a genetic algorithm (GA), the structural parameters EI, , and kr and damping coefficients and cr for the proposed tire model are identified, and the piecewise transfer functions and the planar transfer functions for a heavy-load radial tire are compared with planar hammer test. Experimental and theoretical results show the following: (1) the sectional vibration characteristics for a heavy-load radial tire with a large aspect ratio result from the cross-sectional vibration of the tire carcass; (2) the piecewise transfer function is mainly influenced by the circumferential vibration of the flexible carcass, and this is consistent with a model where a flexible beam is placed on an elastic tire foundation; (3) the analytical transfer functions calculated for the proposed tire model, drawing on the identified structural parameters and damping coefficients, agree well with the experimental results.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom