z-logo
open-access-imgOpen Access
Forecast of the Employment Situation of College Graduates Based on the LSTM Neural Network
Author(s) -
Xing Li,
Ting Yang
Publication year - 2021
Publication title -
computational intelligence and neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.605
H-Index - 52
eISSN - 1687-5273
pISSN - 1687-5265
DOI - 10.1155/2021/5787355
Subject(s) - computer science , correctness , artificial neural network , process (computing) , set (abstract data type) , artificial intelligence , data set , machine learning , embodied cognition , hyperparameter optimization , nonlinear system , data mining , algorithm , physics , quantum mechanics , support vector machine , programming language , operating system
Scientific and reasonable forecast model of graduates' employment data can efficaciously embody the complex characteristics of graduates' employment data and embody the nonlinear dynamic interaction of influencing elements of graduates' employment situation. It has a strong and steady characteristic learning capability, thus selecting the main influence data that influence the change of graduates' employment data. In this paper, according to the situation embodied by students' employment, a data mining analysis model is set up by using the statistical method based on the model of cluster analysis technology to forecast the employment situation of graduates. In this paper, a forecast technique of graduates' employment situation based on the long short-term memory (LSTM) recurrent neural network is conceived, including network structure design, network training, and forecast process implementation algorithm. In addition, aiming at minimizing the forecasting error, an LSTM forecasting model parameter optimization algorithm based on multilayer grid search is conceived. It also verifies the applicability and correctness of the LSTM forecasting model and its parameter optimization algorithm in the analysis of graduates' employment situation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom