A Novel Ferroptosis-Related Gene Signature to Predict Prognosis in Patients with Head and Neck Squamous Cell Carcinoma
Author(s) -
Li Xu,
Yingying Li,
Yang-chun Zhang,
Yong-xu Wu,
Dandan Guo,
Dan Long,
Zhaohui Liu
Publication year - 2021
Publication title -
disease markers
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.912
H-Index - 66
eISSN - 1875-8630
pISSN - 0278-0240
DOI - 10.1155/2021/5759927
Subject(s) - head and neck squamous cell carcinoma , oncology , kegg , medicine , proportional hazards model , gene signature , survival analysis , cancer , head and neck cancer , bioinformatics , gene , biology , transcriptome , gene expression , genetics
The clinical TNM staging system is currently used to evaluate the prognosis of head and neck squamous cell carcinoma (HNSCC). The 5-year survival rate for patients with HNSCC is less than 50%, which is attributed to the lack of reliable prognostic biomarkers. Ferroptosis-related genes (FRGs) regulate cancer initiation and progression. Therefore, we analyzed the correlation between FRGs and the clinical outcomes of patients with HNSCC . A typical prognostic model of FRGs for HNSCC was constructed using bioinformatics tools and data from public databases, including The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and GeneCards. The model was generated based on the following six FRGs: ATG5 , PRDX6 , OTUB1 , FTH1 , SOCS1 , and MAP3K5 . The accuracy of model prediction was analyzed systematically. The overall survival (OS) of the high-risk group was significantly lower than that of the low-risk group. The AUC for 1-year, 3-year, and 5-year survival were 0.645, 0.721, and 0.737, respectively, in the training set (TCGA cohort) and 0.726, 0.620, and 0.584, respectively, in the validation set (GSE65858). The multivariate Cox regression analysis revealed that the risk score was an independent prognostic factor for HNSCC. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that six FRGs were enriched in the ferroptosis pathway. A novel FRG prognostic signature model was established for HNSCC. The findings of this study reveal that FRGs are potential biomarkers for HNSCC.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom