A Novel Hadoop Security Model for Addressing Malicious Collusive Workers
Author(s) -
Amr M. Sauber,
Ahmed Awad,
Amr F. Shawish,
Passent Elkafrawy
Publication year - 2021
Publication title -
computational intelligence and neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.605
H-Index - 52
eISSN - 1687-5273
pISSN - 1687-5265
DOI - 10.1155/2021/5753948
Subject(s) - computer science , cloud computing , overhead (engineering) , node (physics) , redundancy (engineering) , vulnerability (computing) , distributed computing , replication (statistics) , big data , computer security , operating system , statistics , mathematics , structural engineering , engineering
With the daily increase of data production and collection, Hadoop is a platform for processing big data on a distributed system. A master node globally manages running jobs, whereas worker nodes process partitions of the data locally. Hadoop uses MapReduce as an effective computing model. However, Hadoop experiences a high level of security vulnerability over hybrid and public clouds. Specially, several workers can fake results without actually processing their portions of the data. Several redundancy-based approaches have been proposed to counteract this risk. A replication mechanism is used to duplicate all or some of the tasks over multiple workers (nodes). A drawback of such approaches is that they generate a high overhead over the cluster. Additionally, malicious workers can behave well for a long period of time and attack later. This paper presents a novel model to enhance the security of the cloud environment against untrusted workers. A new component called malicious workers' trap (MWT) is developed to run on the master node to detect malicious (noncollusive and collusive) workers as they convert and attack the system. An implementation to test the proposed model and to analyze the performance of the system shows that the proposed model can accurately detect malicious workers with minor processing overhead compared to vanilla MapReduce and Verifiable MapReduce (V-MR) model [1]. In addition, MWT maintains a balance between the security and usability of the Hadoop cluster.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom