z-logo
open-access-imgOpen Access
Multimodal Sensor Motion Intention Recognition Based on Three-Dimensional Convolutional Neural Network Algorithm
Author(s) -
Mofei Wen,
Yuwei Wang
Publication year - 2021
Publication title -
computational intelligence and neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.605
H-Index - 52
eISSN - 1687-5273
pISSN - 1687-5265
DOI - 10.1155/2021/5690868
Subject(s) - computer science , convolutional neural network , fuse (electrical) , artificial intelligence , pattern recognition (psychology) , feature (linguistics) , artificial neural network , motion (physics) , deep learning , term (time) , computer vision , linguistics , philosophy , physics , quantum mechanics , electrical engineering , engineering
With the development of microelectronic technology and computer systems, the research of motion intention recognition based on multimodal sensors has attracted the attention of the academic community. Deep learning and other nonlinear neural network models have a wide range of applications in big data sets. We propose a motion intention recognition algorithm based on multimodal long-term and short-term spatiotemporal feature fusion. We divide the target data into multiple segments and use a three-dimensional convolutional neural network to extract the short-term spatiotemporal features. The three types of features of the same segment are fused together and input into the LSTM network for time-series modeling to further fuse the features to obtain multimodal long-term spatiotemporal features with higher discrimination. According to the lower limb movement pattern recognition model, the minimum number of muscles and EMG signal characteristics required to accurately recognize the movement state of the lower limbs are determined. This minimizes the redundant calculation cost of the model and ensures the real-time output of the system results.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom