z-logo
open-access-imgOpen Access
Application of Deep Reinforcement Learning Algorithm in Uncertain Logistics Transportation Scheduling
Author(s) -
Yunmei Yuan,
LI Hong-yu,
JI Li-li
Publication year - 2021
Publication title -
computational intelligence and neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.605
H-Index - 52
eISSN - 1687-5273
pISSN - 1687-5265
DOI - 10.1155/2021/5672227
Subject(s) - computer science , reinforcement learning , vehicle routing problem , scheduling (production processes) , mathematical optimization , path (computing) , operations research , routing (electronic design automation) , artificial intelligence , computer network , mathematics , engineering , programming language
Nowadays, finding the optimal route for vehicles through online vehicle path planning is one of the main problems that the logistics industry needs to solve. Due to the uncertainty of the transportation system, especially the last-mile delivery problem of small packages in uncertain logistics transportation, the calculation of logistics vehicle routing planning becomes more complex than before. Most of the existing solutions are less applied to new technologies such as machine learning, and most of them use a heuristic algorithm. This kind of solution not only needs to set a lot of constraints but also requires much calculation time in the logistics network with high demand density. To design the uncertain logistics transportation path with minimum time, this paper proposes a new optimization strategy based on deep reinforcement learning that converts the uncertain online logistics routing problems into vehicle path planning problems and designs an embedded pointer network for obtaining the optimal solution. Considering the long time to solve the neural network, it is unrealistic to train parameters through supervised data. This article uses an unsupervised method to train the parameters. Because the process of parameter training is offline, this strategy can avoid the high delay. Through the simulation part, it is not difficult to see that the strategy proposed in this paper will effectively solve the uncertain logistics scheduling problem under the limited computing time, and it is significantly better than other strategies. Compared with traditional mathematical procedures, the algorithm proposed in this paper can reduce the driving distance by 60.71%. In addition, this paper also studies the impact of some key parameters on the effect of the program.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom