Time-Aware Cross-Platform IoT Service Recommendation with Privacy Preservation
Author(s) -
Can Zhang,
Junhua Wu,
Chao Yan,
Guangshun Li
Publication year - 2021
Publication title -
security and communication networks
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.446
H-Index - 43
eISSN - 1939-0114
pISSN - 1939-0122
DOI - 10.1155/2021/5648168
Subject(s) - computer science , locality sensitive hashing , service (business) , internet of things , feature (linguistics) , hash function , recommender system , computer security , world wide web , data mining , hash table , linguistics , philosophy , economy , economics
IoT service recommendation techniques can help a user select appropriate IoT services efficiently. Aiming at improving the recommendation efficiency and preserving the data privacy, the locality-sensitive hashing (LSH) technique is adopted in service recommendation. However, existing LSH-based service recommendation methods ignore the intrinsic temporal feature of IoT services. In light of this challenge, we integrate the temporal feature into the conventional LSH-based method and present a time-aware approach with the capability of privacy preservation for IoT service recommendation across multiple platforms. Experiments on a real-world dataset are conducted to validate the advantage of our proposed approach in terms of accuracy and efficiency in recommendation.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom