Effects of Size, Section Pattern, and Material on the Tensile Performance of Filled Thin‐Walled Tubes
Author(s) -
Yue Gao,
Fei Shao,
Qian Xu,
Linyue Bai,
Lei Gao,
Qingna Ma,
Mei Shen,
Xintong Yan
Publication year - 2021
Publication title -
advances in materials science and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.356
H-Index - 42
eISSN - 1687-8442
pISSN - 1687-8434
DOI - 10.1155/2021/5645865
Subject(s) - materials science , composite material , ultimate tensile strength , section (typography) , cross section (physics) , physics , quantum mechanics , advertising , business
The tensile performance of ductile tubes can be enhanced by the application of fillers. Research studies on the mechanical performance of filled tensile tubes have mainly focused on experiments and numerical simulations on concrete-filled steel tube (CFST) components, while the effects of factors such as size, section pattern, and material of filled tensile tubes on their performance have rarely been studied. In this research, the effects of size, section pattern, and material on the tensile performance of filled tubes have been evaluated through theoretical studies, simulations, and experiments. The tensile strength reinforcement and deformation weakening coefficients of filled circular thin-walled tubes corresponding to hollow tubes were theoretically deduced, and the influencing factors of the two were parametrically evaluated. Tensile performances of filled tubes with circular and square sections were compared with each other through numerical methods. In the current research, the circular section was optimized and prestressed circular hollow support section was proposed. Tensile fracture tests were performed on circular thin-walled tubes made of six different materials to determine material effects on the tensile performance of these structures. It was also found that metallic materials with good ductility significantly enhanced the tensile performance, fracture toughness, and energy consumption of test components containing prestressed filler.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom